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1. I n t r o d u c t i o n  

Let M be a smooth, connected, oriented two-dimensional manifold. A Rieman- 

nian metric g on M determines a conformal class 

[g] = {e2%: u ~ C a ( M ) } ,  

and there is a well-known bijection between the set of conformal classes and the 

set of complex structures on M. A Riemann surface is such a surface endowed 

with a particular choice of conformal or complex structure. 

I t  is reasonable to seek a canonical metric in each conformal class and a natural  

candidate is one with constant Gaussian curvature K.  The case where K is 

negative arises most frequently, and in any case is the one upon which we mostly 

concentrate. Thus we define a P o i n c a r ~  m e t r i c  on a Riemann surface M to be 

one (in the conformal class of M) that  is complete and that  has Gauss curvature 

K = - 1 .  A basic example is the Poincar~ metric G on the unit disk D1 C R 2, 

which has components 

4 
(1.1) a j k  = ( l - - r 2 )  25jk'  r 2 = x~ + x 2. 

This is the unique Poincar~ metric in [5], and it is invariant with respect to all 

conformal (or holomorphic) automorphisms of D1. 

If  go is a metric on M, with Gauss curvature function Ko(x) ,  then g -- e2~g 0 

has Gauss curvature K -- (Ko - Au)e  -2u, which is equal to - 1  provided u 

satisfies 

(1.2) Au - e 2~ = Ko(x) .  

In particular, to find a Poincar~ metric g C [go] it is sufficient to solve (1.2) and 

show that  e2~'go is complete. 

Poincar~ metrics arc closely related to conformal (holomorphic) coverings by 

D1. In fact, a Poincard metric g on M lifts to a Poincar6 metric ~ on the universal 

cover M, and the covering map ~: M -+ M is by definition a local isometry, hence 

conformal. On the other hand, a basic theorem in differential geometry asserts 

that  (M, ~) is isometric to the disk D1 with its Poincar6 metric (1.1). Therefore 

we obtain a holomorphic covering map 

~': D1 > M, 

which is a local isometry between the Poincar~ metrics on D1 and M. Conversely, 

if ~ is any such conformal covering map, the deck transformations on D1 are 
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conformal and thus fix the Poincar6 metric there. Hence ~ acts by isometries 

and pushes down to a Poincar6 metric on M. Extending this reasoning slightly, 

we see that  

(1.3) If  a Poincard metric exists on a Riemann surface M,  it is unique. 

The discussion in the last paragraph makes it clear that  the construction of 

Poincar6 metrics is intimately related to the classical uniformization theorem, 

which we now state: 

UNIFORMIZATION THEOREM: Every simply-connected Riemann surface is holo- 

morphically equivalent to either C., C, or D1. 

Here C_. denotes the Riemann sphere. An equivalent statement is that  any (con- 

nected) Riemann surface M can be holomorphically covered by C-., C, or D1. I t  

is well known that  this result can be established when M is compact by directly 

solving the curvature equation; cf. Section 8 for further discussion of this. One 

of our goals here is to give a direct t reatment  of the curvature equation on a 

broad class of Riemann surfaces, and to use this to establish the uniformization 

theorem. 

We proceed in a series of relatively easy steps. In Section 2 we commence by 

finding a Poincar6 metric when M is the interior of a compact smooth surface 

with boundary. Section 3 takes up another theme, the boundary behavior of the 

Poincar6 metric in this case. In Section 4, an approximation argument is used to 

produce a Poincar6 metric on any domain f~ in the complex plane whose comple- 

ment has at least two points. In Section 5 we take the space to advertise a purely 

curvature proof of Koebe's  disk theorem, and its well known corollary about nor- 

mality of a family of univalent maps. Section 6 establishes the uniformization 

theorem for general simply connected Riemann surfaces, as a consequence of re- 

sults of Sections 2 and 5. In Section 7 we relate the dichotomy between Riemann 

surfaces covered by D1 and those covered by C to a dichotomy in the behavior 

of the curvature equation. In Section 8 we discuss the uniformization theorem 

for compact surfaces. 

We say more about the second main theme of this paper, taken up in Section 3. 

Many developments in modern function theory have focused on the connection 

between the regularity of the boundary of M (especially when it is a planar 

domain) and the regularity of the mapping ~. From the point of view here, it 

seems also of interest to examine the boundary behavior of the solution to (1.2) 

yielding the Poincar6 metric, especially when M has compact closure in a larger 
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Riemann surface. The boundary regularity results we obtain in Section 3 on e - u  

have implications for the qualitative behavior of the covering map D1 -~ M. 

We conclude this introduction by providing a few explicit examples of Poincard 

metrics to illustrate various phenomena that  can occur. Also, we will have specific 

use for several of these formulas in Section 3 and Section 4. 

�9 The upper half-plane H + = {x G R2:x2 > 0} has Poincard metric 

(1.4) g3k = x226jk  �9 

This may be obtained from (1.1) using the standard linear fractional trans- 

formation that  maps D1 to H +. 

�9 The Poincard metric on the punctured disk D* = {x E ]R2:0 < Ix I < 1} is 

(r og!) "= (~3k, 

as can be verified using the covering H + -+ D*,  z ~-~ e *z. 

�9 The strip E = {x E R2:0 < x~ < r}  has Poincard metric 

(1.6) g,k = (sinx2)-25jk, 

as one obtains from (1.4) via the conformal diffeomorphism E -+ H +, 
z ~-~ e z .  

�9 The annulus Ab = {x  E R2: e -~ /b  < Ix[ < 1} has Poincard metric 

[ b ]25jk, 
(1.7) g,k = r s i n ( i l o g ~ )  

as can be seen using (1.6) and the covering E -4 Ab, z ~ e iz/b. Note that  

the b --4 0 limit gives (1.5). 

�9 The quarter-plane Q = {x E R2: xl  > 0, x2 > 0} has Poincard metric 

2 2 x 1 -I- x 2 _ 
(1.8) gjk = -~T_~ d3k, 

:bl~ 2 

as one obtains from (1.4) via the map Q --> H +, z ~+ z 2. 

2. Smoothly bounded Riemann surfaces 

Let ~ be a compact, oriented, connected 2-dimensional Riemannian manifold 

with smooth boundary, with metric go. We can suppose that  ~ is contained in 

a larger open Riemann surface M.  We produce a solution u to (1.2) as a limit, 

and then show it is complete. 
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Given a E (0, oc), the existence of a unique solution ua e C ~ ( ~ )  to (1.2) with 

Ua = a on 0 ~  is easy and well known; cf. Chap te r  14, w of [21]. The  proof  

given there uses a simple combinat ion  of variat ional  techniques and m a x i m u m  

principle arguments .  Our  s t ra tegy  is to take a / z  oc. Thus  we need to consider 

how u~ depends on a. 

LEMMA 2.1: These solu t ions  are m o n o t o n i c  in the p a r a m e t e r  a: 

a < b ~ ua < ub on ~ .  

Set v = Ub-- u~. Then  v]on = b -  a > 0, while 

(2.1) 

Proof:  

(2.2) 

with 

A V  - ~gabi) ~ O, 

e 2ub -- e 2ua 1 r u b  
-- -- Ju 2e2a da > O. (2.3) ~ab Ub -- ua Ub -- U~ a 

Say Vmi n ----- v(p) ,  p E ~ .  ~f v ( p )  < 0, then A v ( p )  = ~ab(p)v(p)  < 0, which is 

impossible,  so v > 0 on ~,  yielding (2.1). II 

R e m a r k  2.1: This l e m m a  and its variants  will be used repea ted ly  in the follow- 

ing. In  other  useful variants,  a and b can be functions on 0f], ra ther  t han  just  

constants ,  and we can also compare  functions u~ and Ub t ha t  satisfy 

(2.4) A u a  + kae 2u~ = Ko ,  AUb -4- kb c2ub -~ Ko.  

If  - k a  > - k b  > 0 on ~,  then (2.1) holds. 

The  next  s tep is to obta in  a uniform upper  bound  for this monotonic  sequence. 

LEMMA 2.2: There  ex is ts  a local ly  bounded  func t ion  B on fl such t ha t  

(2.5) e 2~a(p) < B ( p ) ,  V a < oc. 

P r o o ~  First  consider the case where fl is a p lanar  domain,  fl C R 2. Define 

5(p) = dist(p, 0~) .  We claim tha t  

(2.6) e2U~(p ) < _ _ 4  V a < co. 
- 

In fact, for any /3 E (0, 5(p)) ,  let D~(p )  be the disk of radius fl, centered a t  p, 

with its Poincar~ metr ic  

4fl 2 
(2.7) Sjk = e2w63k - ( ~ 2 ~ r 2 ) 2 v j k ,  r = ] x - p l .  
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Since w solves (1.2) and tends to +oc on OD~(p), Lemma 2.1 gives 

(2.8) u a <_ w on D~(p). 

(2.6) follows a s / ~ / ~  5(p). 

For the general case, use isothermal coordinates to get a neighbourhood p E 

Op C ~ and a conformal map Cp: D1 --~ (Pp. We may assume that  O(Pp is 

smooth and Cp extends to a diffeomorphism on the closure. The Poincar~ metric 

gp -- e2Wpgo on (Pp yields a barrier, and hence an upper bound w _< B, as above. 

It  is clearly possible to choose B as a continuous function. 

Using Lemma 2.2, we now let a / ~  co and obtain 

(2.9) u~(p) /~ u(p), V p e gt, e 2u(p) <_ B(p). 

Each derivative of u~ is locally uniformly bounded by elliptic regularity, so con- 

vergence takes place in C~c(~ ), and hence u is a solution of (1.2). 

Remark  2.2: The upper bound (2.6), valid for the limit u, is not sharp as p 

tends toward 0~t. An only slightly more involved argument, using a conformal 

self-map of the disk Dz(p), shows that  when 0 ~  is smooth, 5(p)2e2~(P) --+ 1 as 

p ~ 0~.  A more refined result along these lines is the content of Proposition 3.1 

below. 

It  remains to demonstrate completeness. 

LEMMA 2.3: Assume 12 is a smoothly bounded and compact surface with metric 

go, and ~ is its interior. I f  u is given as above, as the limit of the u~, then the 

corresponding metric g = e2Ugo is complete on ~. 

Proof: Let 7: [0, L) -+ ~ be a unit-speed geodesic for g, with L < co, and 

suppose that  7(t) does not converge to a point in ~ as t -+ L. This curve also 

has finite length with respect to go, and so there exists p E ~ such that  7(t) --+ p 

as t --+ L. 

As before, first consider the case where f~ is planar. Let :Dp C R 2 \ f~ be a 

disk, tangent to 0~t at p. Regard ]R 2 as sitting inside the Riemann sphere C and 

r The argument = C \ T)p, with its Poincar~ metric h. Thus f~ C 7:)p. consider/)p 

used in the first part  of the proof of Lemma 2.2, applied to a sequence of disks 

decreasing to T)p, also gives 

(2.10) g_> h on gt. 

But (7)p, h) is complete, so the h-length of 7 is infinite, and hence fl is complete 

with respect to g. 
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b 

To handle the general case, assume that ~ sits inside a slightly larger (open) 

Riemann surface M and the metric go is extended smoothly. If ~/(t) -+ p E 0~  

as t /~ L, choose a small holomorphic disk 7:) containing p, roughly cut in half 

by 0~. Choose a smooth curve in 7 ) \  ~ hitting 0~  transversally at p and let 

p~ --+ p along this curve. Denote by e 2vJg0 the Poincar~ metric on 7 ) \ { p j }  

obtained by pulling back (1.5), and let O CC 7:) be a smaller disk containing p 

and the sequence pj. We see that,  for each j < c~, there exists A(j)  < cxz such 

that  

(2.11) Ua>_Vj o n 0 ~ N O ,  f o r a > _ A ( j ) .  

Also, considering ul (which equals 1 on 0gt) we see that there exists B > 0 such 

that  Ul >_ v~ - B on 0 0  n gt, for all j ,  hence 

(2.12) u a k v 3 - B  o n 0 O N O ,  f o r a _ > l .  

Hence, by Remark 2.1, 

(2.13) u a _ > v j - B  o n O N ~ ,  f o r a > m a x ( 1 ,  A(j)),  

S O  

(2.14) u > v j - B  o n O n ~ ,  Vj .  

Hence 

(2.15) u > _ v - B  o n O n ~ ,  

where e 2v go is (1.5) pulled back to 7) \{p} .  This is enough to give completeness. 

I 

Putting these lemmas together we obtain 

PROPOSITION 2.4: If  ~ iS the interior of a smooth two-dimensional manifold 
with boundary ~, then ~ admits a Poincard metric. 

As we have emphasized, Proposition 2.4 implies ~ is holomorphically covered 

by D1. In particular, if ~ is simply connected then there exists a holomorphic 

diffeomorphism ~: D1 -+ ~. It is useful to recall the linear PDE treatment of 

this result, in which one picks p E ~ and takes the Green function u E H I - ~ ( ~ ) n  

C ~ (~ "-{p}), satisfying 

(2.16) Au = 27rhp, on ~, ulo ~ = O. 
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Then u(x) behaves like log [xl in local normal coordinates centered at p, and 

the hypothesis that ft is simply connected implies that there exists a harmonic 

conjugate v, smooth and well defined rood 27rZ, on f~ ",{p}, and the function 

(2.17) (I)(x) = e '~(~)+iv(x) 

yields a holomorphic map (I): ~ -+ D1, extending to a smooth map 4: f~ --+ 

D1. It follows from the Hopf lemma (also known as Zaremba's principle) that 

cg~,u < 0 on 0~,  which via the Cauchy-Riemann equations implies (I) maps 0~  

locally diffeomorphically onto S 1 -- OD1. Now the argument principle implies 

the degree of the map 0~ -+ S 1 equals the number of preimages of any q E D1 

(counting multiplicity). This number is clearly one for q = 0, so (I) is the desired 

holomorphic diffeomorphism. This argument gives us something extra; (I) extends 

to a smooth diffeomorphism o f ~  onto 91.  This has implications for the boundary 

behavior of the Poincard metric on f~, which we will explore and extend in the 

next section. 

3. B o u n d a r y  r e g u l a r i t y  w h e n  f~ is s m o o t h  

In this section we analyze the boundary behavior of the function u E C ~176 (~) pro- 

viding the Poincard metric e2"go, when ~ is smoothly bounded. Throughout this 

section we let p denote the distance function (with respect to go), which is well- 

defined and smooth in some sufficiently small neighbourhood of the boundary 

c9~, and shall often also use y as a local coordinate along Oft. 

PROPOSITION 3.1: Suppose that -~ is smoothly bounded and compact, with 

Poincard metric e2Ugo . Then as p --+ 0, u has an asymptotic expansion of the 

form 

(3.1) u(p, y) N log(l /p)  + ul(y)p + u2(y)p 2 + ' " ,  

where the coefficient functions uj (y) all lie in C ~162 (Of~). Equivalently, 

(3.2) e -'~ E C ~ ( ~ ) ,  and Ore-" -- 1. 

This is the direct analogue of the expansion valid for solutions of the singular 

Yamabe problem in higher dimensions (at least in the most favourable case), cf. 

[16]. The proof has two steps: first, barrier techniques are used to obtain rough 

(scale-invariant) estimates for the solution, and at that point some techniques 

from the linear analysis of [15] are used to improve this to full tangential regularity 

and an expansion. 
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Remark 3.1: We note that  the second condition in (3.2) is an automatic  conse- 

quence of the first. In fact, W = e -u  satisfies 

(3.3) AW -- IVWl2 - 1 KoW,  W]a  ~ = O. 
W 

If W ~ C ~ ( ~ ) ,  then the right side of (3.3) must be continuous on ~,  which 

implies OvW]a~ = 1. 

Remark 3.2: In case ~ is smoothly bounded and simply connected, the smooth- 

ness of e -u  on ~ is a simple consequence of the fact that  the holomorphic dif- 

feomorphism (I): ~ --+ D1 given by (2.17) extends to a smooth diffeomorphism 

(I): ~ --+ 91 ,  plus the fact that  e2Ug o = (I )*(9p)  , where gp is the Poincar6 metric 

on D1. 

R e m a r k  3.3: The smoothness condition in (3.2) is clearly invariant when g0 

is replaced by 91 = e2~~ with w E C ~ ( ~ ) ,  and hence so are the rest of the 

conclusions in Proposition 3.1. 

We will implement Remark 3.3 using the following result. 

LEMMA 3.2: For each connected component  "7 o f  0~ ,  there is a collar neigh- 

borhood C and a C ~176 conformal di f feomorphism ~: C -+ -Ab onto an annulus 

Ab = {z C: e <_ [z[ <_ 1}, as i ,  (1.7). 

Proof: Taking a collar neighborhood Co of % we can produce a simply connected 

O with smooth boundary such that  a collar neighborhood of 0(9 is identified 

with Co. Then we can apply the construction mentioned at the end of Section 2, 

obtaining a C ~ conformal diffeomorphism (I): O -+ 91 .  The inverse image of Ab, 

for b sufficiently large, can then be identified with the desired collar neighborhood 

of-y. I 

2w Using Lemma 3.2, we can construct w E C~176 such that  gl = e go has the 

property that  each boundary component -y of 0 ~  has a collar neighborhood that  

is zsometric to Ab. We now renotate, giving gl the label go. We are ready to 

establish the following estimate. 

LEMMA 3.3: In the set t ing of  Proposit ion 3.1, we have, near 0~ ,  

1 
(3.4) u = l o g - + v ,  Iv I <_ Cp. 

P 

Proof." Recall the conformal diffeomorphism ~o: C --+ Ab constructed in Lemma 

3.2. Pulling the Poincar6 metric (1.7) on Ab back via ~ produces the Poincar~ 
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metric on C, say e2Ulgo, and we clearly have 

(3.5) u < ul ,  on C. 

It is clear from the representat ion (1.7) tha t  this produces an upper  bound on u 

of the form asserted in (3.4). 

It remains to produce an appropria te  lower bound on u[c. It is equivalent 

to produce a lower bound on the metric e2~golc, pulled back to Ab via ~. To 

accomplish this, we supplement the family of metrics (1.7) with the following 

family of metrics on Ab: 

(3.6) g ~  _- [ fl ] 2 j k .  
L rsinh (-fi log ~) 

These are obtained by analytically continuing (1.7) to purely imaginary b. A 

direct check shows tha t  these metrics satisfy (1.2) on {x E JR2:0 < Ixl < 1}, 

for each fl E (0, co), and the metric (1.5) arises as the limit as fl "N 0. The  

metrics (3.6) are complete at the outer  boundary  {z: Iz] = 1}, and, given any 

fixed b > 0, for large fl they are quite small on the inner boundary  {z: Iz[ = b} 

of Ab. Choosing fl sufficiently small gives the desired lower bound,  establishing 

(3.4). | 

Wha t  we have accomplished thus far is to show that  the conformal factor u 

giving the Poincar6 metric g = e2~'go may be wri t ten on a collar neighborhood C 

of each boundary  component  as u = log( l /p )  + v, where Ivl <_ Cp for 0 < p < P0. 

Here p = 1 - r, r = ]z I on the annulus Ab, identified with C. Notice tha t  u 

satisfies 

Agou_r ---- 0 

in Ab, and in addition, lett ing y be the polar angular variable 9 on A, then Ag o ---- 

0 2 -  ( 1 - p ) - 1 0 p + ( 1 - p ) - 2 0 2  there. Hence Ag o ( l o g ( 1 / p ) ) - e  21~ -- 1 / p ( 1 - p ) ,  

and so Agov + ( l /p2)(1  - e 2~) = l /p (1  - p); we rewrite this finally as 

(3.7) Lv - (p2Ag o - 2)v = Q(v) + r(p) 

where r(p) =- -p / (1  - p) and Q(v) = e 2v - 1 - 2v is smooth and vanishes 

quadrat ical ly as v -+ 0. 

It may seem tha t  we have lost ground since the linear operator  L = p2Ag o - 

2 appearing here, while elliptic in the interior, is uniformly degenerate at  0R. 

However, this sort of degenerate elliptic operator  is well-understood, and [15] 

contains a general framework for s tudying degenerate operators  of this type.  
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We now state the results we need from tha t  paper  and then apply them to our 

purposes. 

We shall use a scale of weighted HSlder spaces, pTA~ '~'~' (~) for 1' E ]R and 

g,g' E N, g >_ g'. First, when 1' = 0 and g' = 0, then "'oAt'a'~ - -  A 0t'~ is the 

'geometric HSlder space'  associated to the covariant derivative for the metric 

91 = P-2go (or any metric smoothly  quasi-isometric to this). This means tha t  w 

is in this space if the supremum over all 91-unit balls of the HSlder seminorms 

with exponent  a of the functions (pOp)J(pOy)kw, j + k <_ g, is finite; the norm 

is the obvious one. Note tha t  all derivatives here are taken with respect to 

At'~'s still with weight the degenerate vector fields pop and pOy. The space ~'o , 
At-k 'a  for parameter  7 0, consists of those elements w E Ae0 '~ such tha t  Okyw E "'o 

0 < k < l~. In other words, up to g' of the pOy derivatives may be replaced by 

derivatives with respect to the nondegenerate vector field Oy. Finally, 

P ~ 0  (3.8) 

Clearly 

(3.9) . ( y A s  ' 7 . s163  L: e -~0 -~ P ~t0 

is bounded for every 7 E • and 0 ~_ g~ _~ g. But  this map may be ill-behaved in 

various ways, and to unders tand this we must  compute  the indieial roots of L. 

By definition, 7 is an indicial root  of L if L(p 7) = O(p'~+l). But 

(3.10) L(P 7) = p2AgoP7 -- 2P 7 = (V 2 - 7 - 2)P "y + O(p7+1), 

so this can only happen if I '  = 7J:, where 7 -  = - 1  and 7+ = 2. These are the 

only two indicial roots of L. 

It  is not hard to check tha t  (3.9) fails to have closed range when 7 = 7+. On 

the other hand, Corollary 6.4 and Proposi t ion 5.30 in [15] give 

LEMMA 3.4: The map (3.9) is Fredholm of index zero when - 1  < 7 < 2. 

The proof  relies on the construct ion of a parametr ix  G for L such tha t  

"7*s ~ t)'TAs ~ 
(3.11) G: p ~t 0 ~ r" ~o 

is bounded for all 0 _< g _< g, and such tha t  bo th  GL - I and LG - I are 

compact .  This uses the restriction - 1  < 7 < 2, and immediately implies tha t  

(3.9) is Fredholm when I '  is in this range. The vanishing of the index follows from 

the formal self-adjointness of L (or alternately, because L is real and scalar). 

To proceed further, we also need a regulari ty theorem, which is Proposi t ion 

3.28 in [15]: 
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LEMMA 3.5: Suppose - 1  < 9" < N and Lw = f ,  where w E pVL ~176 and f = pN], 

] E C ~ ( ~ ) ;  then necessarily w = p2wl + pNw 2 -~ p2 logpw3 where wl, w2, w3 E 

C ~ ( ~ ) .  I f  N > 2 here then w3 = O, i.e., the expansion for u has no logarithms. 

Remark 3.4: This  is a specialization of a more general result which, for this 

opera to r  L, s ta tes  tha t  if w E pVL ~ ,  9" > - 1 ,  and Lw = f where f has a 

general polyhomogeneous  expansion (with all exponents  greater  than  or equal to 

9'), then  w also has a polyhomogeneous  expansion of the same form, a l though 

possibly with te rms with ex t ra  logari thmic factors. 

This  l e m m a  applies immedia te ly  as follows: if w E p n o with - 1  < 9' < 2, 

and Lw -- 0, then in part icular ,  w is smooth  on ~ and vanishes a t  0 ~ .  Since 

solutions of Lw = 0 satisfy the m a x i m u m  principle, we get w = 0. Hence (3.9) is 

injective, and thus an isomorphism,  when - 1  < 9' < 2. 

Now recall the decomposi t ion u = log( l /p )  + v where Iv] <_ Cp, i.e., v E pL ~ .  

Since v satisfies a semilinear elliptic equat ion which is uniformly elliptic in unit  

balls relative to the metr ic  gl = p-2g0, we may  use s tandard  Schauder es t imates  

in each of these balls, and recall the initial definition of the weighted Hhlder 

spaces with g~ = 0 to conclude tha t  v E pA~0 '~ for every / _> 0. 

Our  next  (and final) ma jo r  claim is tha t  v E Pt~0 '~'~' for every 0 _< / '  <_ L 

Set 9' = 1 and let G denote the corresponding inverse for L. Write the equat ion 

Lv = Q(v) +r(p)  as v = GQ(v)+ G(r) ;  this is legi t imate because bo th  Q(v) and 

r(p) lie in pA~ '~ for every t _> 0. In fact, since r(p) E P~o for every / _> g', the 

boundedness  of (3.11) shows tha t  the final t e rm is complete ly  tangential ly  regular.  

Next ,  wri te v = p~, so tha t  ~ E A o . Then  Q(v) = p2~)(p,~), where (~(p,s)  

again vanishes quadrat ical ly  as s --+ 0. Let us make the inductive hypothesis  

tha t  v E P~0 for some fixed (and every / > l~). This  is clearly t rue when 

/~ = 0, so we nmst  show tha t  if it is t rue for some value of/~, then it is t rue when 

/~ is replaced by /~  + 1. This  uses a c o m m u t a t o r  argument .  In fact, 

Neglecting the final t e rm  on the right, which we already know has the correct 

regularity, reexpress the other  t e rm on the right as 

By Proposi t ion  3.30 in [15], the c o m m u t a t o r  [0y,G] enjoys the same mapp ing  

propert ies  (3.11) as G itself, and so the second t e rm here lies in pA e'~'~', by the 

inductive hypothesis.  On the other  hand,  0y(p2Q(~)) = (pOy)pQ(~), and since 
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p(~(~) E pA t'~'e', we see tha t  this first term also has this same regularity. Thus 

all terms in this expression for OyV lie in pl~ 0 , and so v E PJ~0 for all 

/ > l ~ + 1. This proves the claim, and shows tha t  v is fully tangential ly regular. 

I t  remains to establish tha t  v = p6 where 6 E C ~176 (~). One extra  consideration 

we need to address is tha t  there are no logari thmic terms in the expansion for 

v, the presence of which might  be suspected from Lemma 3.5. Define .A" to be 

the intersection of p A o over all 0 < < l < oo; we have shown tha t  v E A 1. 

To deduce its expansion, write L = p20~ - 2 + E ,  where E consists of  all 'error  

terms '  (i.e., p202 and - p 2 / ( 1  - p)Op). Now regard the equation for v as an ODE 

in p with values in functions smooth  on the boundary:  

p~O~v - 2v = - E v  + O(v) + r(p). 

We think of the whole right hand side as an inhomogeneous term. Recall tha t  

r(p) = -p / (1  - p) = - p -  p2 . . . .  , and Q(v) = e 2~ - 1 - 2v = 2v 2 + O(v3). 

Then  at the first stage the right hand side has the form - p  + f2, with f2 E A 2. 

Integrat ing the ODE gives v = - ( 1 / 2 ) p  + v2, v2 E ,42. Inserting this into the 

right side shows tha t  the sum of these terms on the right have the form - p  + f3, 

f3 E .A 3. The fact tha t  the p2 term in this expansion vanishes is a special feature, 

due to a fortuitous cancellation; the absence of this term is what  precludes the 

logari thm terms in the expansion for v. Integrat ing the ODE again shows tha t  

v = - ( 1 / 2 ) p  + v2(y)p2+ v3, where v 3 E .,43 and v2(y)  C C~(O~t). Insert ing this 

back into the right side and i terating this argument  gives the complete expansion 

for v. This completes the proof. | 

Remark  3.5: From (3.3) one can compute  02W[o~, and see that  in the expansion 

(3.1), ul(y) = n(y) /2 ,  where n(y) is the curvature of 0f~ at y. On the other 

hand, the coefficient u2(y) depends on the global behavior of f~, as one can see 

by examining (1.7) for different values of b. 

4. Genera l  planar d o m a i n s  

In this section we construct  Poincar~ metrics on general planar  domains,  as long 

as the complement  contains at  least two points. To begin, given ~ C ]R 2, open 

and connected, take a sequence ~ bounded,  with smooth  boundary,  such tha t  

f ~  CC ~t~+l and f~v/~ ~,  in the sense tha t  any compact  K C ~ is contained in 

f~, for large v. Let u ,  be the solutions to (1.2) on ~ .  such that  u,[oa~ = +oe and 
v gjk ---- e2u€ ~jk are complete metric tensors on ~ ,  as in Proposi t ion 2.4 (obtained 

as in (2.9)). The argument  used to prove Lemma 2.1 shows tha t  u~ "~ as v / ~  ce. 

Our main goal in this section is to establish the following. 
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PROPOSITION 4.1: I f  ~ C R 2 is a connected open set with the property that 

~2 \ ~ contains at least two points, then 

(4.1) u~ "~ u as u /~ oc, 

where u E C~162 solving (1.2), and the metric tensor g3k = e2~Sjk is a complete 

metric tensor on ~, of Gauss curvature - 1 .  

As a warm-up, we first give a simple proof of the following special case, which 

extends Proposition 2.4, in the case of planar domains. 

PROPOSITION 4.2: Proposition 4.1 holds when f~ C R 2 is a bounded, connected, 

open set, whose boundary satisf/es the following regularity hypothesis: 

(4.2) Each p E 0~) is the endpoint of a line segment in ]R 2 \ ~. 

Proof'. First we need to get a bound on u~ from below. Indeed, taking f~ inside 

a sufficiently large disk Db(O), with Poincar6 metric e2~~ then u .  _> w on 

f~ .  This gives a locally bounded u on ~ which satisfies (4.1). As before elliptic 

estimates give smooth convergence to u E C a ( D ) ,  solving (1.2). 

Completeness remains to be demonstrated. Under the hypothesis (4.2), the 

completeness proof goes as follows. Say ")': [0, L) -+ f~ is a unit-speed geodesic 

(for gjk) and suppose L < cc and "y(t) does not converge to a point in D as t -+ L. 

As in the proof of Proposition 2.3, we have 7(t) -+ p for some p E 0~.  

Let t be a line segment in ]R 2 \ f~ with p as an endpoint. Regard ~2 C ~2. Now 

it is elementary to produce a conformal diffeomorphism r C \ / --~ D1; pull back 

the Poincard metric on D1 to get a complete m e t r i c  e2Wt~3k on  C. \ l ,  of Gauss 

curvature - 1 .  Again we have u ,  > w on flu, for each v < er and hence u > w 

on f~, and the completeness of  e2U~3k on ~ is proven. I 

The proof of Proposition 4.1 for more general f~ requires more work, which 

we now undertake. To get a lower bound on u ,  this time, we make use of the 

following result. 

LEMMA 4.3: The region C \ { 0 ,  1} has a Poincard metric. 

We will give a curvature equation proof of this lemma after we apply it to 

prove Proposition 4.1. 

Returning to the estimation of u~ in the proof of Proposition 4.1, say Pl,P2 E 

~2 \ f}. Lemma 4.3 also holds for R 2 \ ( p l , P 2 } ,  which therefore has a Poincar6 

metric 

(4.3) hjk : e 2~ 6jk. 
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Now as in Lemma 2.1 we have u~ >_ w on ~ . .  Hence, as before we can deduce 

tha t  uv "~ u with u C C ~ ( ~ )  satisfying (1.1). To prove tha t  the metric e2~53k 
is complete on Ft, we argue as before tha t  if not,  there would exist a unit-speed 

q': [0, L) --+ ~t with q,(t) --+ p E 0 ~  as t --+ L. Here 012 denotes the boundary  of 

in C, so either p E R 2 \ ft or p = oc. We now bring in the metric (4.3), with 

pj E R 2 \ fit and with Pl = P if p ~ oc; using u > w we again have tha t  e2uhjtr is 

complete on 9 .  This gives Proposi t ion 4.1, modulo a proof  of Lemma 4.3. 

We turn  now to a proof  of Lemma 4.3. One ingredient will be a metric on 

C \ { 0 ,  1} of the form e2W~ with 

= A (1 + r~) b (1 + p~)b 
(4.4) e TM , r = - I z l ,  p = Iz - II, r c pC 

with A, a, b, c > 0. A calculation of the Gauss curvature for this metric gives 

a2b ra-2+2Cp2C r2Cpa-2+2c ] 
(4.5) K -  A2 [(1+ r~)2+2b(1+ p~)2 b+ (1 + + 

We have K < 0 and it is bounded  away from zero as long as 

(4.6) a - 2 + 2 c _ < 0 ,  4 c - a - 4 a b - 2 > O .  

For example, we can take 

1 1 5 
(4.7) a = ~ ,  b = 2 ,  c 6 '  

the parameters  used in [14], pp. 78-80. If  A > 0 is small enough, we have 

K < - I .  

Fix such A, let ~ f f  ~ = C \ { 0 ,  1}, and take u ,  C C~ ( ~ ) ,  as in Proposi t ion 

4.1, with u .  ~ as v / ~  exp. A variant of the proof  of Lemma 2.1 gives u~ > w0 

on fit., with wo given by (4.4), so we have convergence: u .  --+ u with u e C ~ ( ~ )  

satisfying (1.2) and u > w0 on 12. However, the metric e2~~ is not  complete,  

so we need to do some more work to show tha t  e2~hjk is complete on C \ {0, 1}. 

To check completeness of e2~53k near 0, we compare it with the metric (1.5), 

i.e., e2V~jk  , where 

(4.8) e 2v = rlog , 

on 0 < r < 1. Given the convergence u~ --+ u, we can find a constant  B _> 0 

such tha t  u~ >_ v - B on {z E C: ]z] = 1/2}. Note tha t  e2(v-B)cJjk has curvature 

- - e  2B <_ --1 on D*. Now a variant of Lemma 2.1 gives u ,  >_ v - B on {z C ~ : 

[z[ <_ 1/2}, and hence 

(4 .9)  u _> v - B o n  {z:  0 < Izl < 1 / 2 } .  
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This implies completeness of e2~hjk near 0. Completeness near 1 is established 

similarly. The formula (1.5) also defines a Poincar6 metric on {z: Iz[ > 1}, and 

this can be used to show that e2U(~jk is complete near oc. Lemma 4.3 is proven. 
| 

Remark: Lemma 4.3 is equivalent to the assertion that there is a holomorphic 

covering map 

(4.10) r D1 ---+ C \ { 0 ,  1}. 

This result is an ingredient in the classical theorems of Picard. The map r can 

be constructed explicitly via elliptic function theory. Cf. Chapter 7 of [1]; this 

provided the original proof. This covering can also be constructed by applying 

Schwarz reflection to the Riemann mapping function of a special domain on C 

(ef. Chapter 5, w of [21]). A variant of (4.4), obtained by adding multiples of 

(1.5) and its images near 0, 1, and oc, was produced in [9] and shown there to 

have Gauss curvature _< - 1  and to be complete on C \ { 0 ,  1}; cf. [13], pp. 7-10. 

We can produce other Riemann surfaces covered by the disk, using the following 

simple result. 

PROPOSITION 4.4: I f  M is a Riemann surface with a holomorphie covering map 

r D1 -+ M and f~ C M is a nonempty  open connected set, then there exists a 

holomorphic covering map ~: D1 -+ ~. 

Proo~ If O c D1 is a connected component of r  then r restricts to a 

holomorphic covering r O -+ f~. By Proposition 4.2, there exists a holomorphie 

covering r D1 -+ O. Composing gives the holomorphic covering ~o: D1 -+ f~. 
| 

We will not dwell on applications of this last proposition, since they would all 

be subsumed by the results of Section 6. 

5. K o e b e ' s  disk t h e o r e m  

Here we make note of a simple curvature proof of some results of P. Koebe on the 

family S of univalent (i.e., one-to-one) holomorphic maps f :  D1 -+ C satisfying 

f(0) -- 0, f ' (0) -= 1. Here is the first result. 

PROPOSITION 5.1: There exists a constant b C (1, oc) such that for any f E S, 

f~ = f (D1)  has the property 

1 
(5.1) ~ < dist(0, 0a)  < 1. 
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Here (and in (5.2), (5.4) below) we use Euclidean distance, so that  dist(0, 0~t) = 

inf{[z[: z E 0~}. L. Bieberbach showed that  one can take b = 4, and this is sharp. 

This sharpened version of Proposition 5.1 is called the Koebe-Bieberbach quarter 

theorem. Our method does not yield b = 4. The following result is equivalent to 

Proposition 5.1. 

P R O P O S I T I O N  5.2: Let ~ be a proper, simply connected domain in C. Let e2u~jk 

be the Poincard metric on ft. Then, for all p C ~, 

1 b dist(p, 0~).  (5.2) ~ dist(p, 0f~) <_ e -~(p) <_ 

To see the equivalence, note that if f :  D1 --+ ft is biholomorphic and 7(z)21dz] 2 

is a metric on ft, then D1 inherits the metric "y(f(z))21ff(z)l 2 Idzl 2. Thus the 

Poincar~ m e t r i c  e2ubjk induced on ~ has 

(5.3) e -~(/(z)) = ~(1 - ]z ]2) l f ' (z ) l .  

Picking a biholomorphic f such that f(0)  = p yields the equivalence of these 

propositions easily. In addition, comparing (5.2) and (5.3) gives the following 

result. 

PROPOSITION 5.3: If  f: D1 -+ ~ is a biholomorphic map, then, for all z E D1, 

(5.4) dist(f(z) ,Oft)  <_ (1 - Iz l2) ] f ' (z ) l  < bdist(f(z),Of~). 

We note that  the upper estimate of dist(0, 0f~) in (5.1) and (equivalently) the 

lower estimate o n  e - u ( p )  in (5.2) are elementary. In fact, the lower estimate in 

(5.2) has already been given in (2.6); alternatively the upper estimate in (5.1) 

follows from the Schwarz lemma. 

It remains to prove the upper estimate o n  e - u ( p )  in (5.2), and we turn to 

that task. Note that a dilation of (2 multiplies all quantities in (5.2) by the 

same factor, so there is no loss of generality in assuming dist(p, Oft) -- 1/2. Say 

ql c Oft, [p - ql[ = 1/2. Note that C \  ft is connected and not bounded, so 

there exists q2 E C \ ~ such that Iql - q21 : 1. Now, as noted in the proof of 

Proposition 4.1, we have e 2~ >_ e 2w o n  f t ,  where e2W~jk is the Poincar~ metric 

on C \ {ql, q2}. In view of the obvious relation between the Poincar~ metric on 

C \ {ql, q2} and the Poincar5 metric (call it ap26jk ) on C \ {0, 1}, we have 

1 
(5.5) dist(p, 0ft) = ~ ~ e ~(p) _> inf q)(z) > 0, 

Izl=l/2 

and the proof is complete. | 
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Remark: The simple argument above reveals the role of the simple connectivity 

of ft in the estimate on the Poincar6 metric. In [4] there is a more sophisticated 

argument yielding an estimate on the Poincar~ metric of planar domains that are 

not simply connected. 

One classical use of Koebe's disk theorem is to provide a uniform bound on 

If(z)[ for f �9 8. We record a short derivation of such a bound from (5.4). To 

begin, the second inequality in (5.4) implies (1 - Iz[2)[ff(z)[  <_ b(1 + [f(z)l ). 

Noting that f(D1/2) D D1/2b, we see that, for all f �9 8, 

1 1 if(z) < B 
(5.6) [z[ ~ ~ ~ If(z)[ ~ ~ f(z) - 1 - Izl - - - - - 5 '  B = b(1 + 2b). 

Since f(D1/2) does not contain D1/2, we see that there exists z(f) such that 

[z(f)[ -- 1/2 and [f(z(f))] = 1/2. Using (5.6) and integrating over an arc of 

{z: Iz[ = 1/2}, we have an absolute bound 

1 
(5.7) [ z [ = ~ l f ( z ) l ~ C ,  V f � 9  

This bound also holds for [z[ _< 1/2. Then radial integration of (5.6) yields an 

absolute bound 

(5.8) If(z)l < C2(1-  H) -B/2, V f � 9  

There exist sharper bounds on elements of 8, obtained by harder work; cf. [2], 

p. 84. However, the bound derived above suffices for the following normal family 

result, also due to Koebe. We record the essentially standard proof. 

PROPOSITION 5.4: The set 8 is compact in 7-/(D1), the space of holomorphic 
functions on D1. 

Proof: Take f~ C 8. The uniform bounds If~(z)l _< K(r) for Izl _< r established 

above imply some subsequence converges locally uniformly to f E 7/(D1). We 

have f(0)  = 0 and if(O) = 1. That  f is univalent is then a simple consequence 

of Hurwitz' theorem. | 

Remark: A direct proof of Proposition 5.4, not using Proposition 5.1, but some- 

what longer and trickier, is given in [8]. 
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and g 6 Go, and assume that hi is regular in HGo and h2g ~ Z(HGo).  Let 

C1, C2 be the conjugacy classes of hi, h2g in HGo. Then every regular element 

of HGo of the form hlh2h with h E H A Go is contained in CIC2. 

Proof." Let 7 = hlh2h be a regular element of HGo,  and write 71 = hl,72 = h2g. 

There exists an element a 6 HGo such that  a721a  -1 = v717-1u = v h 2 1 h - l u  

where v 6 U 0 = U-  N Go, u 6 Uo = U A Go ([EG]). Since 71,7 -1 are regular in 

HGo, one can find elements Vl C U~-, ul C Uo such that  v -- [Vl, 71], u = [% Ul] 

(see [EG]). Thus, a ' ~ l a  -1 = (v171v{l)(ulT-lu-~ 1) and therefore 7 6 C1Cz. 
| 

LEMMA 2: Let G be a Chevalley group and let g = hu be a non-central element 

of a Borel subgroup, where h C H and u 6 U. Then there exists an element 

g' = h'u' where h' E H, u' E U which is conjugate to g and such that the 

element u' written as a product of positive root elements has a non-trivial factor 
r u~ E X~ corresponding to some simple root ~. 

Proof: We may assume u r h Otherwise we can conjugate g = h ~ Z(G) by 

an element from the group U. Further, assume that  in a decomposition of u as 

a product of positive root elements there are no factors corresponding to simple 

roots. Then for every simple root /~ we have w~hw~ 1 6 H and w~uw~ 1 6 U. 

Thus conjugating g by appropriate elements of N corresponding to simple roots 

we can get an appropriate element. | 

LEMMA 3: Let g' be the element from the previous lemma. Let ~ be a fixed 

simple root. I f  ~ and ~ have the same length, then there exists an element 

g" -- h"u" with h" 6 H, u" E U which is conjugate to g' and such that the 

element u" written as a product of positive root elements has a non-trivial factor 
/ !  

ufl E Xfl. 

Proof: Assume first that  a ,  ~ are neighbours in the Dynkin diagram. Let P~,~ 

be the parabolic subgroup corresponding to the subset {a, fl} of the simple root 

system, let V~,~ = Ru(P~,~) be its unipotent radical and let Ga,~ be the Chevalley 

subgroup of G generated by root subgroups of the root system (a, fl>. Assume 

that  the element g' does not satisfy the conditions for g" (otherwise there is 

nothing to prove). Hence we can write g' in the form 

(8) g'  = h'x~xa+~v 
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plus a diagonal argument yields a subsequence of ( ~ )  converging to a univalent 

holomorphic map 

(6.8) ~: M ----+ C. 

From here one could argue that  ~ maps M biholomorphically onto DR, where 

R is the supremum of the sequence (6.4); cf. [8]. For our purposes we can bypass 

this argument. At this point we have M holomorphically equivalent to ~ = 

~ (M)  C C, and the results of Section 4 are applicable, to show that  either ~ = C 

or ~ is holomorphically equivalent to D1. 

7. T h e  curvature dichotomy 

Let fl be a noncompact Riemann surface, with a compatible Riemannian metric 

go. Take compact, smoothly bounded ~ .  C ~ such that  12~ /~ fl, and let 

u~ C C ~ 1 7 6  be solutions to the curvature equation (1.2) such that  e2Uvgo is a 

Poincar~ metric on ~v. As we have seen, u~ ~.~ as v / ~  co. We tackle the issue 

of convergence of u, .  

PROPOSITION 7.1: For each ~ one of  the following mus t  happen: 

(1) uv ~.~ u C C~176  where u satisfies (1.2), or 

(2) u~ ~'~ - c o  on ~. 

In case (2), ~ has no metric con[ormal to go with Gauss curvature < - 1 .  

Proo~ We already know that  if all u~ _> v with v locally bounded then case (1) 

holds. Suppose u~(p,)  --4 - c o  for some sequence p~ c 0 c c  ~ g ;  from now on 

we take v > N + 1. Since u ,  < UN+I for v _~ N + 1, we have a uniform upper 

bound on ~N: U, ~ A N  < co for v > N + 1. We thus have a bound 

(7.1) ]e 2~ + k] < A2N on ~ g ,  v > N + 1. 

Hence we can find v~ E C I (~ N) ,  for v > N + 1, such that  

(7.2) A v . = e  2 ~ v + k  o n ~ g ,  ]V~]L~(~N)_~A3N. 

Hence 

(7.3) A(Uv - Vv) = 0  OriON, --CO < U v - - V v  ~_ A4N, 

for v > N + 1. That  u,(p~)  --+ - 0 o  implies u~ --+ - c o  on 50 now follows from 

Harnack's estimate. 
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As for the last assertion of Proposition 7.1, note that  if e2Wgo has Gauss cur- 

vature < - 1  on ft then u~ > w for all u. II 

Making use of Theorem 6.1, we can restate the dichotomy in Proposition 7.1 

as follows. 

PROPOSITION 7.2: In the setting of Proposition 7.1, case (1) holds if  and only if  

D1 covers f~ and case (2) holds if  and only if  C covers ~. 

Proof: Suppose case (1) holds; we show ft cannot be covered by C. Indeed, a 

holomorphic covering f :  C --+ f~ would pull back the metric e 2u  go to a metric on 

C of curvature - 1 .  However, as one sees by looking at the metrics (2.7) on the 

disks D~ and l e t t i ng /3 / z  oc, case (2) holds for C, so this is not possible. 

On the other hand, suppose case (2) holds; we claim f~ cannot be covered by 

D1. Indeed, a holomorphic covering f :  D1 --+ ~ puts a Poincar~ metric on ft, 

which we have seen cannot hold in case (2). 

Since case (1) yields a holomorphic covering f :  D1 -+ ~2, which puts a Poincar~ 

metric e 2~ go on ft, and since u .  _> v on ~ , ,  we have u > v, and hence u = v, so: 

COROLLARY 7.3: In case (1), the limit u yields a Poincar6 metric e2~go on fL 

In particular, whenever ~ has a metric of curvature <_ -1 ,  it has a conformally 

equivalent Poincar~ metric. 

When f~ is simply connected, the dichotomy in Proposition 7.1 is precisely 

the dichotomy between hyperbolic and parabolic Riemann surfaces, defined as 

follows. 

Definition: A noncompact (connected) Riemann surface ~ is hyperbolic if and 

only if there exists a nonconstant, nonpositive, subharmonic function on fL and 

parabolic otherwise. 

The proof of the uniformization theorem found in most sources (for example, 

[2], [7], [20]) proceeds by separately treating these two cases. It  is shown that  a 

simply connected hyperbolic Riemann surface is equivalent to D1 and a simply 

connected parabolic Riemann surface is equivalent to C. In these treatments,  the 

first step in the hyperbolic case is the construction of a negative Green function 

u, harmonic on f~ \ { p }  and behaving like log Ixl in local normal coordinates 

centered at p. Such a function has a harmonic conjugate v, well defined mod 

21rZ, on f~ \ ( p } ,  and the function 

(7.4) f ( x )  = e ~(x)+~(~) 
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yields a holomorphic map f :  f~ -+ D1. It is then shown that this map is a 

holomorphic diffeomorphism. This argument is highly nontrivial, much more 

subtle than the demonstration of the analogue in the context of (2.17). However, 

[11] produced an ingenious demonstration, used in most modern treatments. A 

short argument to prove the parabolic case is given in [18], and other proofs can 

be found in the references cited above. By contrast, the proof given in Section 6 of 

this paper is in some respects closer to Koebe's original demonstration; compare 

the treatment in [22], pp. 421 422. 

8. Compact  Riemann surfaces 

Here we discuss the uniformization theorem for compact Riemann surfaces, given 

by the following classical result. 

PROPOSITION 8.1: Let M be a compact, connected Riemann surface, with Euler 

characteristic x( M).  

(1) f i x ( M )  = 2, then M is holomorphically equivalent to the Riemann sphere. 

(2) If  x (M)  = O, then M is holomorphically equivalent to a fiat torus TA = 

C/A. 

(3) f ix (M)  < O, then M is holomo~phically cove~ed by D~. 

In cases (2) and (3), the universal cover M of M is noncompact and Theorem 

6.1 applies. If we allow ourselves to use the topological classification of surfaces, 

we know that in case (3) the group of covering transformations of M --+ M is 

noncommutative, so there is a noncommutative discrete group of holomorphic 

automorphisms of M, acting with no fixed points. A holomorphic automorphism 

of C without fixed points must be a translation, and all translations commute, so 

in this case M must be conformally equivalent to D1. On the other hand, in case 

(2) the group of covering transformations of M --+ M is isomorphic to Z 2. One 

can check that there is no group of fixed-point-free holomorphic automorphisms 

of D1 isomorphic to Z 2. 

Case (1) is often proved via the Riemann-Roch theorem, which implies that, 

given p C M, the space of meromorphic functions with at most one simple pole, 

at p, has dimension 2, provided x ( M )  = 2. This space includes the constant 

functions, but it must also contain a meromorphic function f on M with one 

simple pole (at p). Then f defines a holomorphic map f :  M ~ C.. We see that 

f has degree one, and it follows that f is a holomorphic diffeomorphism. 

In fact, all cases of Proposition 8.1 have PDE proofs where one starts with 

some Riemannian metric on M compatible with the given conformal structure. 

We mention PDE treatments of these three cases. 
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To treat  case (1), we note that  given a distribution 5 ~ of order 1 supported at 

p c M such that  (1, ~)  = 0 (a derivative of a delta function) we can solve Au --- 5~. 

This can be done on any compact,  connected M, but in case (1) we can say that  

M \ { p }  is simply connected. Hence u is the real part  of a meromorphic function 

f on M with one simple pole (at p), and as noted in our previous discussion of 

case (1), this yields a holomorphic diffeomorphism f :  M --+ C. 

To treat  case (2), we can solve the curvature equation, which in this case is 

A u  = Ko(x). Note that  by the Gauss-Bonnet theorem fM Ko dA = 0, so we can 

solve for u. Hence M has a conformally equivalent flat metric, from which the 

conclusion follows. 

Case (3) can be established by solving the curvature equation (1.2). This was 

accomplished by [3]; expositions can also be found in [3] and in Chapter 14 of 

[21]. Here we merely mention that  the solution to the curvature equation (1.2) 

minimizes 

M 

on the set 

S =  { u E  H I ( M ) :  fe2UdA=-2rx(M)}. 
M 

There are other very interesting analytic avenues to uniformization in the 

compact case; these include the use of the determinant of the Laplacian [17] 

and second-order [10] and fourth-order heat flows [6]. 
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