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1. Introduction

Let M be a smooth, connected, oriented two-dimensional manifold. A Rieman-
nian metric g on M determines a conformal class

(9] = {e**g: u € C®(M)},

and there is a well-known bijection between the set of conformal classes and the
set of complex structures on M. A Riemann surface is such a surface endowed
with a particular choice of conformal or complex structure.

It is reasonable to seek a canonical metric in each conformal class and a natural
candidate is one with constant Gaussian curvature K. The case where K is
negative arises most frequently, and in any case is the one upon which we mostly
concentrate. Thus we define a Poincaré metric on a Riemann surface M to be
one (in the conformal class of M) that is complete and that has Gauss curvature
K = —1. A basic example is the Poincaré metric G on the unit disk D; C R?,
which has components

4

(1.1) Gjx = m‘sﬂc,

r? = x% + ;cg
This is the unique Poincaré metric in [6], and it is invariant with respect to all
conformal (or holomorphic) automorphisms of D;.

If go is a metric on M, with Gauss curvature function Ko(z), then g = e%%gq
has Gauss curvature K = (Ko — Au)e?*, which is equal to —1 provided u
satisfies

(1.2) Au — e = Ko(z).

In particular, to find a Poincaré metric g € [go] it is sufficient to solve (1.2) and
show that e?“g, is complete.

Poincaré metrics are closely related to conformal (holomorphic) coverings by
D;. In fact, a Poincaré metric g on M lifts to a Poincaré metric § on the universal
cover M , and the covering map ¢: M — M is by definition a local isometry, hence
conformal. On the other hand, a basic theorem in differential geometry asserts
that (M, §) is isometric to the disk D; with its Poincaré metric (1.1). Therefore
we obtain a holomorphic covering map

p: Dy — M,

which is a local isometry between the Poincaré metrics on D; and M. Conversely,
if  is any such conformal covering map, the deck transformations on D; are
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conformal and thus fix the Poincaré metric there. Hence ¢ acts by isometries
and pushes down to a Poincaré metric on M. Extending this reasoning slightly,
we see that

(1.3) If a Poincaré metric exists on a Riemann surface M, it is unique.

The discussion in the last paragraph makes it clear that the construction of
Poincaré metrics is intimately related to the classical uniformization theorem,
which we now state:

UNIFORMIZATION THEOREM: Every simply-connected Riemann surface is holo-
morphically equivalent to either C, C, or D;.

Here C denotes the Riemann sphere. An equivalent statement is that any (con-
nected) Riemann surface M can be holomorphically covered by @, C,or Dy. It
is well known that this result can be established when M is compact by directly
solving the curvature equation; cf. Section 8 for further discussion of this. One
of our goals here is to give a direct treatment of the curvature equation on a
broad class of Riemann surfaces, and to use this to establish the uniformization
theorem.

We proceed in a series of relatively easy steps. In Section 2 we commence by
finding a Poincaré metric when M is the interior of a compact smooth surface
with boundary. Section 3 takes up another theme, the boundary behavior of the
Poincaré metric in this case. In Section 4, an approximation argument is used to
produce a Poincaré metric on any domain 2 in the complex plane whose comple-
ment has at least two points. In Section 5 we take the space to advertise a purely
curvature proof of Koebe’s disk theorem, and its well known corollary about nor-
mality of a family of univalent maps. Section 6 establishes the uniformization
theorem for general simply connected Riemann surfaces, as a consequence of re-
sults of Sections 2 and 5. In Section 7 we relate the dichotomy between Riemann
surfaces covered by D, and those covered by C to a dichotomy in the behavior
of the curvature equation. In Section 8 we discuss the uniformization theorem
for compact surfaces.

We say more about the second main theme of this paper, taken up in Section 3.
Many developments in modern function theory have focused on the connection
between the regularity of the boundary of M (especially when it is a planar
domain) and the regularity of the mapping . From the point of view here, it
seems also of interest to examine the boundary behavior of the solution to (1.2)
yielding the Poincaré metric, especially when M has compact closure in a larger
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Riemann surface. The boundary regularity results we obtain in Section 3 on e™*
have implications for the qualitative behavior of the covering map D; — M.
We conclude this introduction by providing a few explicit examples of Poincaré
metrics to illustrate various phenomena that can occur. Also, we will have specific
use for several of these formulas in Section 3 and Section 4.
e The upper half-plane H* = {z € R?: 25 > 0} has Poincaré metric

(1.4) 93k = 372_2(5]'19-

This may be obtained from (1.1) using the standard linear fractional trans-
formation that maps D; to H*.
e The Poincaré metric on the punctured disk D* = {z € R%: 0 < |z] < 1} is

(1.5) gjk = (r log %) _26]k,

as can be verified using the covering H* — D*, z — e*%,
e The strip £ = {z € R%: 0 < z3 < 7} has Poincaré metric

(1.6) 9k = (sinz2) 284,

as one obtains from (1.4) via the conformal diffeomorphism ¥ — H™,
z > et
e The annulus A, = {z € R?: e~"/% < |z| < 1} has Poincaré metric
1.7 b 26
(1.7) 93k = [m} ks
as can be seen using (1.6) and the covering ¥ — Ay, 2z — ¢%*/%. Note that
the b — 0 limit gives (1.5).
e The quarter-plane Q = {z € R?%: z; > 0,z2 > 0} has Poincaré metric
x% + x%

(1-8) gjk = ‘?%‘x?‘(sgk,

as one obtains from (1.4) via the map Q — H*, 2z 22.

2. Smoothly bounded Riemann surfaces

Let © be a compact, oriented, connected 2-dimensional Riemannian manifold
with smooth boundary, with metric go. We can suppose that Q is contained in
a larger open Riemann surface M. We produce a solution « to (1.2) as a limit,
and then show it is complete.
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Given a € (0, 00), the existence of a unique solution u, € C*®(R) to (1.2) with
u, = a on O is easy and well known; cf. Chapter 14, §1 of [21]. The proof
given there uses a simple combination of variational techniques and maximum
principle arguments. Our strategy is to take a /* co. Thus we need to consider
how u, depends on a.

LEMMA 2.1: These solutions are monotonic in the parameter a:

(2.1) a<b=u,<up onf

Proof: Set v = up — u,. Then v|pg = b — a > 0, while

(2.2) Av — pgpv = 0,

with
2up _ ,2uq 1 Up

(2.3) Pap = — A / 2¢2?dg > 0.
Up — Ug Up ~ Ug Jqy

a

Say vmin = v(p), p € Q. If v(p) < 0, then Av(p) = @as(p)v(p) < 0, which is
impossible, so v > 0 on {2, yielding (2.1). |

Remark 2.1: This lemma and its variants will be used repeatedly in the follow-
ing. In other useful variants, ¢ and b can be functions on J€, rather than just
constants, and we can also compare functions u, and up that satisfy

(24) Aua + ka62u“ = K(), AUb + kbezub = Ko.
If —k, > —ky > 0 on £, then (2.1) holds.

The next step is to obtain a uniform upper bound for this monotonic sequence.

LEMMA 2.2: There exists a locally bounded function B on Q such that

(2.5) e?P) < B(p), Va<oo.

Proof: First consider the case where Q is a planar domain, 2 C R?. Define
d(p) = dist(p, 0Q). We claim that

4
2.6 e2ue?) < :
(26) ~ 4(p)?

In fact, for any B8 € (0,0(p)), let Dg(p) be the disk of radius 3, centered at p,
with its Poincaré metric

Va < oo.

w 4p
(2.7) 03k = €0k = e

6jka r= |x—p|.
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Since w solves (1.2) and tends to +00 on dDg(p), Lemma 2.1 gives
(2.8) u, <w on Dg(p).

(2.6) follows as 8 7 é6(p).

For the general case, use isothermal coordinates to get a neighbourhood p €
O, C Q and a conformal map ¥,: D; - O,. We may assume that 00, is
smooth and ¢, extends to a diffeomorphism on the closure. The Poincaré metric
gp = €2¥rgg on O, yields a barrier, and hence an upper bound w < B, as above.
It is clearly possible to choose B as a continuous function.

Using Lemma 2.2, we now let a / co and obtain

(2.9) ua(p) Sulp), YpeQ, €™ < B(p).

Each derivative of u, is locally uniformly bounded by elliptic regularity, so con-

vergence takes place in C2(£2), and hence u is a solution of (1.2).

Remark 2.2: The upper bound (2.6), valid for the limit u, is not sharp as p
tends toward 992. An only slightly more involved argument, using a conformal
self-map of the disk Dg(p), shows that when 9% is smooth, §(p)2e?*(P) — 1 as
p — 0. A more refined result along these lines is the content of Proposition 3.1
below.

It remains to demonstrate completeness.

LEMMA 2.3: Assume ) is a smoothly bounded and compact surface with metric
go, and Q is its interior. If u is given as above, as the limit of the u,, then the
corresponding metric g = e2*gq is complete on ().

Proof: Let v: [0,L) — Q be a unit-speed geodesic for g, with L < oo, and
suppose that (t) does not converge to a point in £ as ¢ — L. This curve also
has finite length with respect to go, and so there exists p € £ such that y(t) - p
ast— L.

As before, first consider the case where 2 is planar. Let D, C R>\Q be a
disk, tangent to 0 at p. Regard R? as sitting inside the Riemann sphere € and
consider D), = C~ Dy, with its Poincaré metric h. Thus 2 C D;,. The argument
used in the first part of the proof of Lemma 2.2, applied to a sequence of disks
decreasing to D;,, also gives

(2.10) g>h onf.

But (D), h) is complete, so the h-length of «y is infinite, and hence €2 is complete
with respect to g.
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To handle the general case, assume that Q sits inside a slightly larger (open)
Riemann surface M and the metric go is extended smoothly. If v(t) — p € Q2
as t ' L, choose a small holomorphic disk D containing p, roughly cut in half
by 8. Choose a smooth curve in D~ hitting dQ transversally at p and let
p, — p along this curve. Denote by e**1gy the Poincaré metric on D ~{p;}
obtained by pulling back (1.5), and let © CC D be a smaller disk containing p
and the sequence p;. We see that, for each j < oo, there exists A(j) < oo such
that

(2.11) ug > v; ondQNO, fora> A(j).

Also, considering u; (which equals 1 on 9€2) we see that there exists B > 0 such
that u; > v, — B on 00N, for all j, hence

(2.12) Uy > v, —B ondONQ, fora>1.

Hence, by Remark 2.1,

(2.13) U > v; —B onONQ, for a > max(l,A(j)),
80

(2.14) v>v;—B onONQ, Vij

Hence

(2.15) u>v—B onONQ,

where €2V gq is (1.5) pulled back to D ~{p}. This is enough to give completeness.
|

Putting these lemmas together we obtain

PROPOSITION 2.4: If Q is the interior of a smooth two-dimensional manifold
with boundary Q, then © admits a Poincaré metric.

As we have emphasized, Proposition 2.4 implies  is holomorphically covered
by D;. In particular, if { is simply connected then there exists a holomorphic
diffeomorphism ¢: D; — Q. It is useful to recall the linear PDE treatment of
this result, in which one picks p € Q and takes the Green function u € H!=¢(Q)N
C>(Q ~{p}), satisfying

(2.16) Au = 2wy, on Q, 0.

"laﬂ =
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Then u(z) behaves like log |z| in local normal coordinates centered at p, and
the hypothesis that Q is simply connected implies that there exists a harmonic
conjugate v, smooth and well defined mod 27Z, on § ~{p}, and the function

(2.17) B(z) = er(@)Hiv(@

yields a holomorphic map ®: Q - D;, extending to a smooth map ®: Q —
D;. It follows from the Hopf lemma (also known as Zaremba’s principle) that
d,u < 0 on 92, which via the Cauchy-Riemann equations implies ® maps 052
locally diffeomorphically onto S* = dD;. Now the argument principle implies
the degree of the map 99 — S! equals the number of preimages of any ¢ € D,
(counting multiplicity). This number is clearly one for ¢ = 0, so ® is the desired
holomorphic diffeomorphism. This argument gives us something extra; ® extends
to a smooth diffeomorphism of Q onto D;. This has implications for the boundary
behavior of the Poincaré metric on €2, which we will explore and extend in the
next section.

3. Boundary regularity when Q is smooth

In this section we analyze the boundary behavior of the function u € C*°(2) pro-
viding the Poincaré metric e2“gg, when § is smoothly bounded. Throughout this
section we let p denote the distance function (with respect to go), which is well-
defined and smooth in some sufficiently small neighbourhood of the boundary
0, and shall often also use y as a local coordinate along 9.

PROPOSITION 3.1: Suppose that Q is smoothly bounded and compact, with
Poincaré metric e?*gy. Then as p — 0, u has an asymptotic expansion of the
form

(3.1) u(p, y) ~ log(1/p) + w1 (y)p + ua(y)p* + - -,

where the coefficient functions u,(y) all lie in C*°(02). Equivalently,
(3.2) e e C®(), and e *=1.

This is the direct analogue of the expansion valid for solutions of the singular
Yamabe problem in higher dimensions (at least in the most favourable case), cf.
(16]. The proof has two steps: first, barrier techniques are used to obtain rough
(scale-invariant) estimates for the solution, and at that point some techniques
from the linear analysis of [15] are used to improve this to full tangential regularity
and an expansion.



Vol. 130, 2002 CURVATURE AND UNIFORMIZATION 331

Remark 3.1: 'We note that the second condition in (3.2) is an automatic conse-
quence of the first. In fact, W = e™* satisfies

VW2 -1

(3.3) AW =

- KW, W|,,=0.
If W € C®(Q), then the right side of (3.3) must be continuous on €2, which
implies 9, Wlsq = 1.

Remark 3.2: In case Q is smoothly bounded and simply connected, the smooth-
ness of e™* on {2 is a simple consequence of the fact that the holomorphic dif-
feomorphism ®: Q@ — Dj; given by (2.17) extends to a smooth diffeomorphism
®: QO — Dy, plus the fact that e?*gy = ®*(gp), where gp is the Poincaré metric
on D,.

Remark 3.3: The smoothness condition in (3.2) is clearly invariant when g
is replaced by g1 = e*go with w € C*(Q), and hence so are the rest of the
conclusions in Proposition 3.1.

We will implement Remark 3.3 using the following result.

LEMMA 3.2: For each connected component v of 952, there is a collar neigh-
borhood C and a C™ conformal diffeomorphism ¢: C — Ay onto an annulus
Ay={2€C e ™t < |2| <1}, asin (1.7).

Proof: Taking a collar neighborhood Cy of 7y, we can produce a simply connected
O with smooth boundary such that a collar neighborhood of 8Q is identified
with Cg. Then we can apply the construction mentioned at the end of Section 2,
obtaining a C* conformal diffeomorphism ®: © — D;. The inverse image of A,
for b sufficiently large, can then be identified with the desired collar neighborhood
C of . i

Using Lemma 3.2, we can construct w € C®(Q) such that g; = 2% g has the
property that each boundary component v of 92 has a collar neighborhood that
is 1sometric to A,. We now renotate, giving g; the label go. We are ready to
establish the following estimate.

LEMMA 3.3: In the setting of Proposition 3.1, we have, near 0%,
1

(3.4) u=log-+uv, |v|<Cp.
p

Proof: Recall the conformal diffeomorphism ¢: C — A, constructed in Lemma
3.2. Pulling the Poincaré metric (1.7) on A, back via ¢ produces the Poincaré
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metric on C, say e2*1go, and we clearly have
(3.5) u<u;, onC.

It is clear from the representation (1.7) that this produces an upper bound on u
of the form asserted in (3.4).

It remains to produce an appropriate lower bound on u|e. It is equivalent
to produce a lower bound on the metric e?*gg|c, pulled back to Ay via ¢. To
accomplish this, we supplement the family of metrics (1.7) with the following
family of metrics on Ay:

(3.6) gfk = [—IBT] 2(5jlc~
rsinh(Blog ;)

These are obtained by analytically continuing (1.7) to purely imaginary b. A
direct check shows that these metrics satisfy (1.2) on {z € R%: 0 < |z| < 1},
for each # € (0,00), and the metric (1.5) arises as the limit as 8 >\, 0. The
metrics (3.6) are complete at the outer boundary {z: |z|] = 1}, and, given any
fixed b > 0, for large A they are quite small on the inner boundary {z: |z| = b}
of Ap. Choosing g sufficiently small gives the desired lower bound, establishing
(3.4). m

What we have accomplished thus far is to show that the conformal factor u
giving the Poincaré metric g = e2“gy may be written on a collar neighborhood C
of each boundary component as u = log(1/p) + v, where |v| < Cp for 0 < p < po.
Here p = 1 — r, r = |z| on the annulus A,, identified with C. Notice that u
satisfies

Agou— e =0

in Ay, and in addition, letting y be the polar angular variable 6 on A, then A, =
82— (1—p)~18,+(1—p) 202 there. Hence Ay, (log(1/p))—e2'8(1/P) = 1/p(1-p),
and so Ag v+ (1/p%)(1 — €2¥) = 1/p(1 — p); we rewrite this finally as

(3.7) Lv = (p*Ag, = 2)v = Q(v) +r(p)

where 7(p) = —p/(1 — p) and Q(v) = €%’ — 1 — 2v is smooth and vanishes
quadratically as v — 0.

It may seem that we have lost ground since the linear operator L = p2A90 -
2 appearing here, while elliptic in the interior, is uniformly degenerate at 9€2.
However, this sort of degenerate elliptic operator is well-understood, and [15]
contains a general framework for studying degenerate operators of this type.
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We now state the results we need from that paper and then apply them to our
purposes.

We shall use a scale of weighted Holder spaces, p"’Af;’o"l’ (Q) for v € R and
4,0 €N, £ > ¢. First, when v = 0 and £ = 0, then A5*" = A5® is the
‘geometric Holder space’ associated to the covariant derivative for the metric
g1 = p~2go (or any metric smoothly quasi-isometric to this). This means that w
is in this space if the supremum over all g;-unit balls of the Holder seminorms
with exponent « of the functions (pd,)? (pd,)*w, j + k < £, is finite; the norm
is the obvious one. Note that all derivatives here are taken with respect to
the degenerate vector fields pd, and pd,. The space Af;’“’f', still with weight
parameter y = 0, consists of those elements w € A5* such that Ohw € AL for
0 < k < £. In other words, up to £ of the pd, derivatives may be replaced by
derivatives with respect to the nondegenerate vector field d,. Finally,

32) AL — (= g € A,
Clearly
(3.9) L: p7A€+2"’7£' N p"Aﬁ’o"e'

is bounded for every v € R and 0 < ¢/ < £. But this map may be ill-behaved in
various ways, and to understand this we must compute the indicial roots of L.
By definition, v is an indicial root of L if L(p?) = O(p"*!). But

(3.10) L(p") = p*Dgop” — 20" = (v’ =y = 2)p" + O(p" 1Y),

so this can only happen if v = 1, where v = —1 and v+ = 2. These are the
only two indicial roots of L.

It is not hard to check that (3.9) fails to have closed range when v = y1. On
the other hand, Corollary 6.4 and Proposition 5.30 in [15] give

LEMMA 3.4: The map (3.9) is Fredholm of index zero when —1 < v < 2.

The proof relies on the construction of a parametrix G for L such that
(3.11) G vaga,l’ — qu€+2,a,z'

is bounded for all 0 < ¢ < ¢, and such that both GL — I and LG — I are
compact. This uses the restriction —1 < v < 2, and immediately implies that
(3.9) is Fredholm when + is in this range. The vanishing of the index follows from
the formal self-adjointness of L (or alternately, because L is real and scalar).

To proceed further, we also need a regularity theorem, which is Proposition
3.28 in [15]:
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LEMMA 3.5: Suppose -1 <y < N and Lw = f, where w € p?L*>® and f = pr,
f € C>=(Q); then necessarily w = p*w; + pNwq + p? log pws where wy, wq, w3 €
C>®(Q). If N > 2 here then w3 = 0, i.e., the expansion for u has no logarithms.

Remark 3.4: This is a specialization of a more general result which, for this
operator L, states that if w € p7L*°, v > —1, and Lw = f where f has a
general polyhomogeneous expansion (with all exponents greater than or equal to
7v), then w also has a polyhomogeneous expansion of the same form, although
possibly with terms with extra logarithmic factors.

This lemma applies immediately as follows: if w € p"Ag’o"g’ with —1 < v < 2,
and Lw = 0, then in particular, w is smooth on © and vanishes at Q. Since
solutions of Lw = 0 satisfy the maximum principle, we get w = 0. Hence (3.9) is
injective, and thus an isomorphism, when —1 < vy < 2.

Now recall the decomposition u = log(1/p) + v where jv| < Cp, i.e., v € pL™.
Since v satisfies a semilinear elliptic equation which is uniformly elliptic in unit
balls relative to the metric g, = p~2gy, we may use standard Schauder estimates
in each of these balls, and recall the initial definition of the weighted Holder
spaces with # = 0 to conclude that v € pAg’a for every £ > 0.

Our next (and final) major claim is that v € pAS’a’l' for every 0 < £/ < 4.
Set v = 1 and let G denote the corresponding inverse for L. Write the equation
Lv = Q(v) +r(p) as v = GQ(v) + G(r); this is legitimate because both Q(v) and
r(p) lie in pAS’a for every £ > 0. In fact, since r{p) € pAf;"”l/ for every £ > ¢/, the
boundedness of (3.11) shows that the final term is completely tangentially regular.
Next, write v = po, so that ¥ € Ag’a. Then Q(v) = p2Q(p, ¥), where Q(p, s)
again vanishes quadratically as s — 0. Let us make the inductive hypothesis
that v € pAS’“’E' for some fixed ¢/ (and every £ > £'). This is clearly true when
£ = 0, so we must show that if it is true for some value of ¢/, then it is true when
¢’ is replaced by ¢ + 1. This uses a commutator argument. In fact,

Oyv = 8,GQ(v) + 9,G(r).

Neglecting the final term on the right, which we already know has the correct
regularity, reexpress the other term on the right as

G(8,0°Q(9)) + [0y, GIQ(v).

By Proposition 3.30 in [15], the commutator {8y, G] enjoys the same mapping
properties (3.11) as G itself, and so the second term here lies in pAbt by the
inductive hypothesis. On the other hand, 8,(p?Q (%)) = (p9,)pQ(?), and since
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pQ(%) € pAg’a‘e,, we see that this first term also has this same regularity. Thus
all terms in this expression for dyv lie in pAf;"’"', and so v € pAﬁ"’"’E’“L1 for all
£> ¢ + 1. This proves the claim, and shows that v is fully tangentially regular.

It remains to establish that v = p where 7 € C®(Q). One extra consideration
we need to address is that there are no logarithmic terms in the expansion for
v, the presence of which might be suspected from Lemma 3.5. Define A" to be
the intersection of p"z\g’a’el over all 0 < # < £ < oo; we have shown that v € A%,
To deduce its expansion, write L = p?02 — 2+ E, where E consists of all ‘error
terms’ (i.e., p?d7 and —p?/(1 - p)d,). Now regard the equation for v as an ODE
in p with values in functions smooth on the boundary:

p?02v — 20 = —Ev + Q(v) + r(p).

We think of the whole right hand side as an inhomogeneous term. Recall that
r(p) = —p/(L—p) = —p—p?—---, and Q(v) = €% — 1 — 2v = 2v% + O(v®).
Then at the first stage the right hand side has the form —p + fo, with f, € A2
Integrating the ODE gives v = —(1/2)p + vq, vz € A?. Inserting this into the
right side shows that the sum of these terms on the right have the form —p + fs,
f3 € A3. The fact that the p? term in this expansion vanishes is a special feature,
due to a fortuitous cancellation; the absence of this term is what precludes the
logarithm terms in the expansion for v. Integrating the ODE again shows that
v = —(1/2)p+ va(y)p? + vs, where v3 € A3 and vy(y) € C°(9N). Inserting this
back into the right side and iterating this argument gives the complete expansion
for v. This completes the proof. |

Remark 3.5: From (3.3) one can compute 82W |aq, and see that in the expansion
(3.1), u1{y) = #(y)/2, where r(y) is the curvature of Q at y. On the other
hand, the coefficient uz(y) depends on the global behavior of ), as one can see
by examining (1.7) for different values of b.

4. General planar domains

In this section we construct Poincaré metrics on general planar domains, as long
as the complement contains at least two points. To begin, given Q C R?, open
and connected, take a sequence §2,, bounded, with smooth boundary, such that
Q, CC Qyyq and Q, 7 Q, in the sense that any compact K C ) is contained in
(2, for large v. Let u, be the solutions to (1.2) on §2, such that u,|sq, = +o0o0 and
I = e2u d;% are complete metric tensors on 2, as in Proposition 2.4 (obtained
as in (2.9)). The argument used to prove Lemma 2.1 shows that u, \,as v  cc.
Our main goal in this section is to establish the following.
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PROPOSITION 4.1: If @ C R? is a connected open set with the property that
R? \ Q contains at least two points, then

(4.1) u, \yu asv S oo,

where u € C*(Q), solving (1.2), and the metric tensor g,x = e**8;y, is a complete
metric tensor on §2, of Gauss curvature —1.

As a warm-up, we first give a simple proof of the following special case, which
extends Proposition 2.4, in the case of planar domains.

PROPOSITION 4.2: Proposition 4.1 holds when Q C R? is a bounded, connected,
open set, whose boundary satisfies the following regularity hypothesis:

(4.2) Each p € 99 is the endpoint of a line segment in R? \ Q.

Proof: First we need to get a bound on u, from below. Indeed, taking €2 inside
a sufficiently large disk Dp(0), with Poincaré metric €**§;x, then u, > w on
Q,. This gives a locally bounded u on § which satisfies (4.1). As before elliptic
estimates give smooth convergence to u € € (), solving (1.2).

Completeness remains to be demonstrated. Under the hypothesis (4.2), the
completeness proof goes as follows. Say : [0,L) — Q is a unit-speed geodesic
(for gjx) and suppose L < oo and ~y(t) does not converge to a point in Q ast — L.
As in the proof of Proposition 2.3, we have «(t) — p for some p € 9.

Let £ be a line segment in R2 \  with p as an endpoint. Regard R? C €. Now
it is elementary to produce a conformal diffeomorphism ¢: C e Dy; pull back
the Poincaré metric on D; to get a complete metric 24,5 on C ~ £, of Gauss
curvature —1. Again we have u, > w on §2,, for each v < oo, and hence u > w
on £, and the completeness of 62"5]k on (2 is proven. |

The proof of Proposition 4.1 for more general {2 requires more work, which
we now undertake. To get a lower bound on u, this time, we make use of the
following result.

LEMMA 4.3: The region C~{0,1} has a Poincaré metric.

We will give a curvature equation proof of this lemma after we apply it to
prove Proposition 4.1.

Returning to the estimation of w, in the proof of Proposition 4.1, say p1,p2 €
R2 ~ Q. Lemma 4.3 also holds for RZ ~{p;, p2}, which therefore has a Poincaré
metric

(43) hjk = 621” 6jk-
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Now as in Lemma 2.1 we have u, > w on £,. Hence, as before we can deduce
that u, \, u with u € C®((Q) satisfying (1.1). To prove that the metric e®*4,
is complete on 2, we argue as before that if not, there would exist a unit-speed
v: [0,L) — § with y(t) — p € 9Q as t — L. Here 9Q denotes the boundary of
Q in @, so either p € R2 X~ Q or p = co. We now bring in the metric (4.3), with
p; € R2 N Q and with p; = p if p # 00; using u > w we again have that e?*4,j is
complete on §2. This gives Proposition 4.1, modulo a proof of Lemma 4.3.

We turn now to a proof of Lemma 4.3. One ingredient will be a metric on
C~{0,1} of the form e?“o(*)§,;, with

(1+79)° (14 p)°
/,-C pC
with A,a,b,c > 0. A calculation of the Gauss curvature for this metric gives

(4.4) e =A , r=|z|, p=1|2-1j,

45) K=

a2b [ ra—2+2cp2c N ,r2cpa—2+2c ]
A2 (1 + T-a)2+2b(1 + pa)2b (1 + ,,.a)2b(1 + pa)2+2b )

We have K < 0 and it is bounded away from zero as long as
(4.6) a—24+2c<0, 4c—a—4ab—-2>0.
For example, we can take

(4.7) a=<

the parameters used in [14], pp. 78-80. If A > 0 is small enough, we have
K< ~1.

Fix such A, let 2, Q= C~{0,1}, and take u, € C*(,), as in Proposition
4.1, with u, N\, as v / oo. A variant of the proof of Lemma 2.1 gives u, > wq
on €, with wg given by (4.4), so we have convergence: %, — u with u € C*(Q)
satisfying (1.2) and u > wo on Q. However, the metric €>*°4,, is not complete,
so we need to do some more work to show that %4, is complete on C~{0,1}.

To check completeness of e**§,; near 0, we compare it with the metric (1.5),
i.e., e24,;, where

(4.8) eV = (r log %) ‘2,

on 0 < r < 1. Given the convergence u, — u, we can find a constant B > 0
such that u, > v— B on {2z € C: |2| = 1/2}. Note that e2(*=5)§;; has curvature
—e?B < —1 on D*. Now a variant of Lemma 2.1 gives u, > v — B on {z € Q, :
|z| <£1/2}, and hence

(4.9) u>v—B on{z0<|z|<1/2}.
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This implies completeness of ezuéjk near 0. Completeness near 1 is established
similarly. The formula (1.5) also defines a Poincaré metric on {z: |2] > 1}, and
this can be used to show that €**d,j is complete near co. Lemma 4.3 is proven.
|

Remark: Lemma 4.3 is equivalent to the assertion that there is a holomorphic
covering map

(4.10) ¥: Dy — C~{0,1}.

This result is an ingredient in the classical theorems of Picard. The map v can
be constructed explicitly via elliptic function theory. Cf. Chapter 7 of [1]; this
provided the original proof. This covering can also be constructed by applying
Schwarz reflection to the Riemann mapping function of a special domain on C
(cf. Chapter 5, §6 of [21]). A variant of (4.4), obtained by adding multiples of
(1.5) and its images near 0, 1, and oo, was produced in [9] and shown there to
have Gauss curvature < —1 and to be complete on C~{0,1}; cf. [13], pp. 7-10.

We can produce other Riemann surfaces covered by the disk, using the following
simple result.

PROPOSITION 4.4: If M is a Riemann surface with a holomorphic covering map
: D1 — M and Q@ C M is a nonempty open connected set, then there exists a
holomorphic covering map ¢: Dy — €.

Proof: If O C D, is a connected component of ¥~1(2), then 1 restricts to a
holomorphic covering v¥: O — Q. By Proposition 4.2, there exists a holomorphic
covering ¢¥: D; — O. Composing gives the holomorphic covering ¢: D; — €.
]

We will not dwell on applications of this last proposition, since they would all
be subsumed by the results of Section 6.

5. Koebe’s disk theorem

Here we make note of a simple curvature proof of some results of P. Koebe on the
family S of univalent (i.e., one-to-one) holomorphic maps f: D; — C satisfying
f(0) =0, f'(0) = 1. Here is the first result.

PROPOSITION 5.1: There exists a constant b € (1,00) such that for any f € S,
Q = f(D;) has the property

(5.1)

v =

< dist(0,09) < 1.
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Here (and in (5.2), (5.4) below) we use Euclidean distance, so that dist(0, 0Q) =
inf{|z|: z € 0S2}. L. Bieberbach showed that one can take b = 4, and this is sharp.
This sharpened version of Proposition 5.1 is called the Koebe-Bieberbach quarter
theorem. Our method does not yield b = 4. The following result is equivalent to
Proposition 5.1.

PrOPOSITION 5.2: Let § be a proper, simply connected domain in C. Let 62"6jk
be the Poincaré metric on ). Then, for all p € (Q,

(5.2) %dist(p, Q) < e~ < g dist(p, 842).

To see the equivalence, note that if f: D; — Q is biholomorphic and v(z)2|dz|?
is a metric on {2, then D; inherits the metric v(f(2))?|f'(2)|? |dz|>. Thus the
Poincaré metric €2%6;; induced on ) has

(53) eI = 21— )]

Picking a biholomorphic f such that f(0) = p yields the equivalence of these
propositions easily. In addition, comparing (5.2) and (5.3) gives the following
result.

PROPOSITION 5.3: If f: Dy — € is a biholomorphic map, then, for all z € Dy,
(5.4) dist(f(2), 89) < (1 - || f/(2)] < bdist(f (2),09).

We note that the upper estimate of dist(0, Q) in (5.1) and (equivalently) the
lower estimate on e~*() in (5.2) are elementary. In fact, the lower estimate in
(5.2) has already been given in (2.6); alternatively the upper estimate in (5.1)
follows from the Schwarz lemma.

It remains to prove the upper estimate on e *®) in (5.2), and we turn to
that task. Note that a dilation of C multiplies all quantities in (5.2) by the
same factor, so there is no loss of generality in assuming dist(p, 92) = 1/2. Say
q1 € 90, |p — q1] = 1/2. Note that C~ Q is connected and not bounded, so
there exists g2 € C Q such that |¢g; — ¢2] = 1. Now, as noted in the proof of
Proposition 4.1, we have ¢** > e®* on (2, where 2“4, is the Poincaré metric
on C~{q1,¢2}. In view of the obvious relation between the Poincaré metric on
C~{qg1,¢2} and the Poincaré metric (call it ®28;;) on C{0,1}, we have

(5.5) dist(p, %) = % — e > il 8(:)>0,

and the proof is complete. |
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Remark: The simple argument above reveals the role of the simple connectivity
of 2 in the estimate on the Poincaré metric. In [4] there is a more sophisticated
argument yielding an estimate on the Poincaré metric of planar domains that are
not simply connected.

One classical use of Koebe’s disk theorem is to provide a uniform bound on
|f(2)] for f € S. We record a short derivation of such a bound from (5.4). To
begin, the second inequality in (5.4) implies (1 — |2]?)|f'(2)| < &(1 + |f(2)]).
Noting that f(Di1/2) D Dy/2s, we see that, for all f € S,

1 f’(z)} < B

(5.6) 2| > % =@ 25 = )| S 12

B = b(1 +2b).
Since f(D;/2) does not contain D, /2, We see that there exists z(f) such that
|2(f)| = 1/2 and |f(2(f))| = 1/2. Using (5.6) and integrating over an arc of
{z: |z| = 1/2}, we have an absolute bound

1

(5.7) 2| =5 = 1f(A)|<C, Vfes.

This bound also holds for 2| < 1/2. Then radial integration of (5.6) yields an
absolute bound

(5.8) f(2)] < Co(1~12))™B/%, ¥ fes.

There exist sharper bounds on elements of S, obtained by harder work; cf. [2],
p. 84. However, the bound derived above suffices for the following normal family
result, also due to Koebe. We record the essentially standard proof.

PROPOSITION 5.4: The set S is compact in H(D1), the space of holomorphic
functions on D;.

Proof: Take f, € 8. The uniform bounds |f,(z)| < K(r) for |z| < r established
above imply some subsequence converges locally uniformly to f € H(D;). We
have f(0) = 0 and f/(0) = 1. That f is univalent is then a simple consequence
of Hurwitz’ theorem. |

Remark: A direct proof of Proposition 5.4, not using Proposition 5.1, but some-
what longer and trickier, is given in [8].
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6. The uniformization theorem

In this section we prove the uniformization theorem for general noncompact
Riemann surfaces:

THEOREM 6.1: If M is a noncompact, simply connected Riemann surface, then
M is holomorphically equivalent to either D, or C.

To prove this, we begin by taking Q, CC Q,41 / M, such that each set Q,
is compact, with smooth boundary, and simply connected. (This relies on some
results on the topology of surfaces, such as the a priori knowledge that M is
diffeomorphic to D;.) Our argument from here parallels one in [8], except that
we apply the method of the curvature equation to each €.

In detail, say p € Qg CC 2; CC ---. By Proposition 2.4 we have for each v a
holomorphic diffeomorphism

(6‘1) Py: § — Dy, ¢u(p) =0.

Take o, = Dy, (p) € Hom(T,M,C). Then o, = a,0p for uniquely defined
a, € C, and if we set

62 0% —Da, Ro=lall eu(s) =6 (o),

we have

(6.3) Do, (p) = Doo(p) = ag, V.

It follows from the Schwarz lemma that |ag| > |a1| > |az| > - - -, and hence
(6.4) Ro<Ri<Ry<---.

To proceed, let us consider
(6.5) d, :(p,,ogoal: D1 — Dpg,,.
We have each ®, holomorphic and one-to-one (i.e., univalent), and
(6.6) $,(0)=0, ®,(0)=1.

At this point we apply Koebe’s normal family theorem, established in the last

section. Thus we see that a subsequence of ¢, |, converges to a univalent map

|,
Qg — C. A similar consideration of

(67) (I)Vu =Py o ‘P;l: DRH - DR,,a v 2 u,
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plus a diagonal argument yields a subsequence of {y, ) converging to a univalent
holomorphic map

(6.8) oM — C.

From here one could argue that ¢ maps M biholomorphically onto Dp, where
R is the supremum of the sequence (6.4); cf. [8]. For our purposes we can bypass
this argument. At this point we have M holomorphically equivalent to Q =
p(M) C C, and the results of Section 4 are applicable, to show that either 2 = C
or 2 is holomorphically equivalent to D;.

7. The curvature dichotomy

Let €2 be a noncompact Riemann surface, with a compatible Riemannian metric
go. Take compact, smoothly bounded €, C Q such that Q, €, and let
u, € C*(£),) be solutions to the curvature equation (1.2) such that e**»gq is a
Poincaré metric on €2,,. As we have seen, u, \, as v ~ 00. We tackle the issue
of convergence of u,.

PRroOPOSITION 7.1: For each ) one of the following must happen:
(1) uy, \yu € C(R2), where u satisfies (1.2), or
(2) uy, Ny —00 on Q.
In case (2), 2 has no metric conformal to go with Gauss curvature < —1.

Proof: We already know that if all u,, > v with v locally bounded then case (1)
holds. Suppose u,(p,) = —oo for some sequence p, € O CC {y; from now on
we take v > N + 1. Since v, < unyy1 for v > N + 1, we have a uniform upper
bound on Qn: u, < Ay < oo for v > N + 1. We thus have a bound

(7.1) le® + k| < Aoy onQn, v>N+1.

Hence we can find v, € C1(Qp), for v > N + 1, such that

(7.2) Av, =€ +k onQy, |v] Loy < Aan.
Hence
(7.3) Aluy, —v,) =0 onQp, —oo<u,~—1v, < Ayn,

for v > N + 1. That u,(p,) = —oo implies u, — —oo on O now follows from
Harnack’s estimate.
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As for the last assertion of Proposition 7.1, note that if e** gy has Gauss cur-
vature < —1 on €2 then u, > w for all v. [ |

Making use of Theorem 6.1, we can restate the dichotomy in Proposition 7.1
as follows.

PROPOSITION 7.2: In the setting of Proposition 7.1, case (1) holds if and only if
D covers Q and case (2) holds if and only if C covers §2.

Proof: Suppose case (1) holds; we show € cannot be covered by C. Indeed, a
holomorphic covering f: C — Q would pull back the metric e2* gy to a metric on
C of curvature —1. However, as one sees by looking at the metrics (2.7) on the
disks Dg and letting 8 * 0o, case (2} holds for C, so this is not possible.

On the other hand, suppose case (2) holds; we claim Q cannot be covered by
D,. Indeed, a holomorphic covering f: D; —  puts a Poincaré metric on €,
which we have seen cannot hold in case (2).

Since case (1) yields a holomorphic covering f: D; — £, which puts a Poincaré
metric eV gg on Q, and since u, > v on §),, we have v > v, and hence u = v, so:

COROLLARY 7.3: In case (1), the limit u yields a Poincaré metric e**g, on ).
In particular, whenever §) has a metric of curvature < —1, it has a conformally
equivalent Poincaré metric.

When 2 is simply connected, the dichotomy in Proposition 7.1 is precisely
the dichotomy between hyperbolic and parabolic Riemann surfaces, defined as
follows.

Definition: A noncompact (connected) Riemann surface 2 is hyperbolic if and
only if there exists a nonconstant, nonpositive, subharmonic function on €, and
parabolic otherwise.

The proof of the uniformization theorem found in most sources (for example,
[2], [7], [20]) proceeds by separately treating these two cases. It is shown that a
simply connected hyperbolic Riemann surface is equivalent to Dy and a simply
connected parabolic Riemann surface is equivalent to C. In these treatments, the
first step in the hyperbolic case is the construction of a negative Green function
u, harmonic on @ “{p} and behaving like log|z| in local normal coordinates
centered at p. Such a function has a harmonic conjugate v, well defined mod
2nZ, on Q~{p}, and the function

(7.4) flz) = et(@)+rv(z)
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yields a holomorphic map f: & — D;. It is then shown that this map is a
holomorphic diffeomorphism. This argument is highly nontrivial, much more
subtle than the demonstration of the analogue in the context of (2.17). However,
[11] produced an ingenious demonstration, used in most modern treatments. A
short argument to prove the parabolic case is given in [18], and other proofs can
be found in the references cited above. By contrast, the proof given in Section 6 of
this paper is in some respects closer to Koebe’s original demonstration; compare
the treatment in [22], pp. 421-422.

8. Compact Riemann surfaces

Here we discuss the uniformization theorem for compact Riemann surfaces, given
by the following classical result.

ProposITION 8.1: Let M be a compact, connected Riemann surface, with Euler
characteristic x(M).
(1) If x(M) = 2, then M is holomorphically equivalent to the Riemann sphere.
(2) If x(M) = 0, then M is holomorphically equivalent to a flat torus Ta =
C/A.
(3) If x(M) < 0, then M is holomorphically covered by D;.

In cases (2) and (3), the universal cover M of M is noncompact and Theorem
6.1 applies. If we allow ourselves to use the topological classification of surfaces,
we know that in case (3) the group of covering transformations of M — Mis
noncommutative, so there is a noncommutative discrete group of holomorphic
automorphisms of M , acting with no fixed points. A holomorphic automorphism
of C without fixed points must be a translation, and all translations commute, so
in this case M must be conformally equivalent to D;. On the other hand, in case
(2) the group of covering transformations of M - M is isomorphic to Z2. One
can check that there is no group of fixed-point-free holomorphic automorphisms
of D; isomorphic to Z2.

Case (1) is often proved via the Riemann-Roch theorem, which implies that,
given p € M, the space of meromorphic functions with at most one simple pole,
at p, has dimension 2, provided x(M) = 2. This space includes the constant
functions, but it must also contain a meromorphic function f on M with one
simple pole (at p). Then f defines a holomorphic map f: M — C. We see that
f has degree one, and it follows that f is a holomorphic diffeomorphism.

In fact, all cases of Proposition 8.1 have PDE proofs where one starts with
some Riemannian metric on M compatible with the given conformal structure.
We mention PDE treatments of these three cases.
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To treat case (1), we note that given a distribution 8’ of order 1 supported at
p € M such that (1, 48’) = 0 (a derivative of a delta function) we can solve Au = §'.
This can be done on any compact, connected M, but in case (1) we can say that
M ~{p} is simply connected. Hence u is the real part of a meromorphic function
f on M with one simple pole (at p), and as noted in our previous discussion of
case (1), this yields a holomorphic diffeomorphism f: M — C.

To treat case (2), we can solve the curvature equation, which in this case is
Au = Ky(z). Note that by the Gauss-Bonnet theorem [, KodA =0, so we can
solve for u. Hence M has a conformally equivalent flat metric, from which the
conclusion follows.

Case (3) can be established by solving the curvature equation (1.2). This was
accomplished by [3]; expositions can also be found in [3] and in Chapter 14 of
[21]. Here we merely mention that the solution to the curvature equation {1.2)
minimizes

Flu) = /(%lduﬁ +K0(:c)u)dA
M
on the set
S = {u € H\(M): /e2“dA - —27TX(M)}.
M

There are other very interesting analytic avenues to uniformization in the
compact case; these include the use of the determinant of the Laplacian {17]
and second-order [10] and fourth-order heat flows [6].
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